If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-6x-200=0
a = 3; b = -6; c = -200;
Δ = b2-4ac
Δ = -62-4·3·(-200)
Δ = 2436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2436}=\sqrt{4*609}=\sqrt{4}*\sqrt{609}=2\sqrt{609}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{609}}{2*3}=\frac{6-2\sqrt{609}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{609}}{2*3}=\frac{6+2\sqrt{609}}{6} $
| 8(6x-3)=24 | | 16x-15x=16 | | 3t+5t-3t-2=3 | | 12+5x=7x-4 | | 8s-6s=18 | | 8c-6c-2c+3c=12 | | 9x+111=180 | | 8^(x+5)=76 | | 9x+x+4x-7x=14 | | 20x+3x-20x=18 | | 8.44=34.6+4h/ | | 36x-30-7=-181 | | 8^x+5=76 | | -.12-.04x=-.84 | | 2(4x-3)=25 | | 18x+2x=20 | | 6(6x-5)-7=-181 | | -.12-.04g=-.52 | | 3z+3z−5 =z2−z−2z+7 | | -1/3=-5/3+u | | 8x=8/2 | | 200+16.5x=250+14.5x | | 5/12+p=-1/12 | | 1-e=0.1296 | | -1.25-r=-9.25 | | c+5.3=-6.4 | | 4(4x-5)=-36 | | -1.25-r=-8.25 | | -11/4-r=-8.25 | | 382=-4a-7(7a=6) | | -4/9x=2/3x+5/6 | | 5x+8=2x+10 |